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We establish that a heavy solid with one fixed point can execute, in the Lagrange
case, steady rotations about an axis situated arbitrarily within the body, in addi-
tion to a rotation about the dynamic symmetry axis, By combining the integrals
of perturbed motion, we find sufficient conditions for the stability of the perma-
nent rotation under consideration. We also indicate the necessary conditions of
stability, using the system of the first approximation equations.

The stability of the rotation of a heavy solid with one fixed point about the
dynamic symmetry axis situated vertically, was investigated in [1] for the La-
grange case. The necessary and sufficient condition for this rotation in a more
general force field was obtained in [2].

Let us consider a solid with one fixed point O, the principal moments of inertia of
which are 4 = B == €, moving in a field of force which admits a force function U =
U (ys), where ys is the cosine of the angle between the dynamic symmetry axis Oz and
the spatially fixed axis Oz,. The Euler-Poisson equations in this case have the form

pP=(1—08)gr—7yus, ¢ =0—1)pr+yu, r =0 (D
VI =r—q¥s V2 =PVs— ™ Y5 =gV — PVs
6=C/A,U3=dU/dY3

where p, ¢ and r are the respective projections of the instantaneous angular velocity
on the principal axes of inertia Oz, Oy and Oz of the body and ¥:» va and vs are the
direction cosines of the 0z -axis in the Ozyz coordinate system.

In addition to the particular solution p = ¢ =0, r =, y; = v3 = 0, y3 = 1, Egs.(1)
admit the following particular solution just as in the case of a heavy solid [3]

p=(l)ll=0, q:(.l)lz,rz(l)ls, ‘Y1=11=0, 72=l2' ?3:13, (D2= (2)
us® /[, (1 — 8) Iy, us® = (AU / dys)

Ya=ls

Here o denotes the angular velocity of rotation and the constants 1, l,, I; are the direc-

tion cosines of the Oz, -axis in the Oxyz -axes satisfying the condition 4,2 + [;? + 132 =

1, Choasing I, = 0 does not affect the generality, In fact we can rotate the z~ and

y-axes in the equatorial plane of the inertia ellipsoid of the solid in such a way, that the

permanent axis Oz, is in the same plane as‘the Oz- and Oy-axis and is orthogonal tothe
Oz -aXis,

The solution (2) of (1) corresponds to the rotation of the solid at a specified angular
velocity o about the Oz,-axis situated arbitrarily within the body, except when I; = 0,
in which case the angular velocity becomes infinite, The admissible conditions of the
problem are represented by the permanent axes for which the quantity @2 is positive, and
are determined by the inequality ugs° /(1 — 8) 3> 0,
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Let us investigate the stability of the motion (2) with respect to the variables g, »,
T ¢s and ¢ — ©ly, p — @Y. We set

p=z,9=0htzm, r=0tzy, p=pn,va=Lt v =111 (3)

in the perturbed motion. The equations of the perturbed motion obtained from (1) with
help of (3) admit the following first integrals:

Vy = 2,3 4 2,2 + 8242 + 20 (lyzg + Ol3z9) —2(uy’ys + Yaugs'ys?) +...= (4)
const, Ve = 2191 + 2ayp + Lizg + 0lyyy + 8 (Izz5 + 0lgys +
zgyg) =comst, Vg =y >+ 92+ ys® + 2 (Lyy + Lys) =0, V=23 =
const, uss® = (d2U / dys?), .,

where the dots denote terms of at least third order in yg .

To study the stability of the unperturbed motion (2) with respect to the variables r,
Vs » — 0y, and ¢ — oy, , we construct the Liapunov function according to the Chetaev
method, in the form of the following quadratic combination of the integrals (4):

V=V — 20V, + 0Vg+ AV = (2, — y)? -+ (2 —0y)* + 6+ (5)
M) 2 — 2008z5y5 + (02 — ugg®) yg? + - -+

The quadratic part of the function (5) is positive-definite in the variables-z; — oy, z, —
®Ys, 3 and ys, provided that the inequality
(6 + A) (0® — ugy’) — 622> 0

holds, This can be made to hold by appropriate choice of the constant A, provided that
the condition

holds.

Since under the condition (6) the function (5) is positive-definite for sufficiently small
values of y, and its derivative is identically equal to zero by virtue of the equations of
perturbed motion, therefore the inequality (6) represents the sufficient condition of sta-~
bility of the unperturbed motion (2) with respect to the variables p — 0y, ¢ — @yy -
and y; (see Rumiantsev theorem in [4]).

The stability with respect to » follows from the fourth integral of (4), hence the ine-
quality (6) is a sufficient condition of stability with respect to the angle of nutation
0 (cos 8 = v,)-

To study the stability of the unperturbed motion (2) with respect to the variables ¢, r,
Y2» ¥» and p — oy, we choose the Liapunov function in the form

0 —ugy® = ug’ /(1 —8) Iy —ugs® >0 O]

V=V —20Vy+ 0?Vg+ AV,2 4+ 0z,Vy / I = (7, — oy,)? + z,2 + M
0%y, + (8 + A) 32 — 2008z5y5 + (02 — uys®) ys® + 20l3zey, / I +. ..
Function (7) is positive-definite in sufficiently close neighborhood of the coordinate ori-
gin of the z;, y; variable space, if its quadratic part is positive-definite. The latter
takes place when the condition
6+ A) [0 (1 — 12/ 13) — ugy’l — 6202 >0

holds. This in tum is true for sufficiently large values of A, provided that the inequality

(1 — 12 ) —ug® =u” (1 — 12/ )/ (1 —8) Iy —uz° >0 (®
holds.
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The derivative of (7) has, by virtue of the equations of perturbed motion, the form
V' = @'V, / I, = 0, and this is correct since V, — 0. Therefore, on the basis of the
Rumiantsev theorem [4] the inequality (8) is a sufficient condition of stability of the unper
turbed motion (2) with respect to the variables p — wy1, ¢, 7, a2 and 7vs-

The unstable permanent rotations (2) can be separated out by considering the linear-
ized system of equations of perturbed motion

z" = (1 — 0) 0 (lyz; + lpzs) — u'ys — Lgs’ys T = (0 — 1) @ (lgz + (9

Lzg) + ug’y pi' = — lgza + laxg + @ (Ugya — lLoys)y ¥y = Lz —
olyy;, Y3 = — Lz, + o0y, 25 =0
The characteristic equation of (9) has the form
o (0% 4 go) = 0, go = 0 [1 + (1 — 8)2 1¥] — ugs’ly’ + 2us’ly (10)

It is clear that when g, << 0 ,one of the roots of (10) is positive and the motion (2)
in its first approximation will, by the Liapunov theorem on stability, be unstable.
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The results of this paper can be regarded as a transposition of the results of Che-~
taev obtained for the finite systems of differential equations [1] to the denumer-
able systems of the finite difference equations, We use the concepts of [2].

Let us consider the system

00
y,(m+1) = p, My, (m), m=01,... (1
i=1
Here and henceforth s =1, 2, ..., the functions p,; are bounded and the series
| Poy (M) | 4+ | pea (m) | + - - - converge uniformly in m for 0  m < oo. We define

|y (m) || = sups | ys (m) .



